

III JORNADAS INTERNACIONALES DE INVESTIGACIÓN, CIENCIA Y UNIVERSIDAD

XII JORNADAS DE INVESTIGACIÓN 2020

UNIVERSIDAD

Determinación de carotenoides, compuestos fenólicos y capacidad antioxidante en subproductos enológicos

Jofré, Viviana^{1,2}; Assof, Mariela^{1,2}; Fanzone, Martín^{1,2}; Andino, Germán¹; Santos, Leonel¹; Cantoro-Fernandez, Eliana¹

¹ Universidad Juan Agustín Maza. Mendoza, Argentina. ² Instituto Nacional de Tecnología Agropecuaria, Laboratorio de Aromas y Sustancias Naturales. Mendoza, Argentina.

Hipótesis: Los orujos vitivinícolas poseen concentraciones de compuestos bioactivos que los hacen aptos para ser empleados como insumos de otras industrias.

Objetivo: Determinar los contenidos de carotenoides y fenoles y la capacidad antioxidante de orujos Malbec, Cabernet Sauvignon y Merlot de Luján de Cuyo (Mendoza).

Metodología: 2 kg de orujos Malbec y Cabernet Sauvignon y Merlot se obtuvieron de la vinificación de esos cepajes en la Bodega Experimental INTA. Las muestras se procesaron, secaron (60°C, 3 h), se separaron hollejos (h) y semillas (s). Cada fracción se pulverizó (1mm). Los compuestos bioactivos se extrajeron por microextracción sólido-líquido asistida por ultrasonido empleando etanol y hexano como solventes. Los carotenoides totales (CT) se evaluaron por espectrofotometría a 450 nm; y los fenoles totales (FT), por el método de Folin-Ciocalteu. La capacidad antioxidante se determinó por el método de Brand-Williams y se expresó como actividad porcentual de depuración de radicales-libres (%FRSA). Estudios estadísticos: ANOVA (Tuckey-HSD, α =0.05).

Orujos: carotenoides totales, fenoles totales y capacidad antioxidante

	Cepaje	CT (μg/g _{muestra seca})	FT (mg/g _{muestra seca})	%FRSA
hollejos	MB	45.29 (±2.47)	15.73 (±1.28)	60.79 (±10.05)
(h)	CS	48.32 (±1.28)	13.38 (±0.81)	66.03 (±3.33)
	MT	43.16 (±5.29)	17.88 (±5.01)	54.79 (±10.82)
semillas	MB	0.79 (±0.08)	22.32 (±3.01)	93.73 (±0.80)
(s)	CS	1.32 (±0.05)	13.09 (±0.87)	78.98 (±2.28)
	MT	1.61 (±0.07)	13.10 (±1.60)	94.12 (±1.41)

Cepaje: MB Malbec; CS Cabernet Sauvignon; MT Merlot

Valores promedios (n=3); desviación estandar entre paréntesis.

Resultados: En hollejos no hubo diferencias significativas en CT, FT y %FRSA entre cepajes. En semillas, CT fue diferente entre los 3 cepajes, FT-MB se diferenció de las otras y %FRSA no presentó diferencias entre MB y MT. Las relaciones promedio entre cepajes fueron: CT_h/CT_s=36.77; FT_s/CT_h=1.03; %FRSA_s/%FRSA_h=1.47. **Conclusiones:** Los residuos de vinificación de las variedades Malbec, Cabernet Sauvignon y Merlot, dada su riqueza en compuestos bioactivos y su elevada capacidad antioxidante (principalmente semillas), podrían ser empleados en diversas industrias como alimentaria, farmacéutica, cosmética.